Abstract This study conducts a thorough investigation into the behaviors of analysis ensemble spreads linked to stratospheric sudden warming (SSW) events. A stratosphere-resolving ensemble data assimilation system is used here to document the evolution of analysis spread leading up to a pair of warming events. Precursory signals of the increased ensemble spreads were found a few days prior to two SSW events that occurred during December 2018 and August–September 2019 in the Northern and Southern Hemispheres, respectively. The signals appeared in the upper and middle stratosphere and did not appear at lower heights. When the signals appeared, it was found that both tendency by forecast and analysis increment in a forecast-analysis (data assimilation) cycle simultaneously became large. An empirical orthogonal function analysis showed that the dominant structures of the precursory signals were equivalent barotropic and were 90° out-of-phase with the analysis ensemble-mean field. Over the same period, the upper and middle stratosphere became more susceptible to barotropic instability than in their previous states. We conclude that the differing growth of barotropically unstable modes across ensemble members can amplify spread during the lead-up to SSW events. Significance Statement Winds in the winter stratospheric polar vortex are typically westerly. Occasionally, however, warming over the pole leads to a reversal of the flow through a process known as stratospheric sudden warming. These events are difficult to predict even in state-of-the-art analysis and forecasting systems. In this study, we identify a precursor signal in the form of increased ensemble spread that appears to originate from differing realizations of growing barotropic modes across the ensemble. This signal could serve as a useful forecasting tool by enhancing situational awareness in the lead-up to potential stratospheric sudden warming events.