ABSTRACT Horizontal deceleration technique is an underpinning factor to musculoskeletal injury risk and performance in multidirectional sport. This study primarily assessed within- and between-session reliability of biomechanical and performance-based aspects of a horizontal deceleration technique and secondarily investigated the effects of limb dominance on reliability. Fifteen participants completed four horizontal decelerations on each leg during test and retest sessions. A three-dimensional motion analysis system was used to collect kinetic and kinematic data. Completion time, ground contact time, rate of horizontal deceleration, minimum centre of mass height, peak eccentric force, impulse ratio, touchdown distance, sagittal plane foot and knee angles at initial contact, maximum sagittal plane thorax angle, and maximum knee flexion moment were assessed. Coefficients of variation (COV) and intraclass correlation coefficients (ICC) were used to assess within- and between-session reliability, respectively. Seven variables showed “great” within-session reliability bilaterally (COV ≤9.13%). ICC scores were ‘excellent’ (≥0.91; n = 4), or ‘good’ (0.76-0.89; n = 7), bilaterally. Limb dominance affected five variables; three were more reliable for the dominant leg. This horizontal deceleration task was reliable for most variables, with little effect of limb dominance on reliability. This deceleration task may be reliably used to assess and track changes in deceleration technique in healthy adults.