We have carried out high resolution observations with Atacama Large Millimeter/Submillimeter Array (ALMA) of continuum emission from Orion KL region. We identify 11 compact sources at ALMA band 6 (245 GHz) and band 7 (339 GHz), including Hot Core, Compact Ridge, SMA1, IRc4, IRc7, and a radio source I (Source I). Spectral energy distribution (SED) of each source is determined by using previous 3 mm continuum emission data. Physical properties such as size, mass, hydrogen number density and column density are discussed based on the dust graybody SED. Among 11 identified sources, Source I, a massive protostar candidate, is a dominant energy source in Orion KL. We extensively investigate its SED from centimeter to submillimeter wavelengths. The SED of Source I can be fitted with a single power-law index of 1.97 suggesting an optically thick emission. We employ the H$^{-}$ free-free emission as an opacity source of this optically thick emission. The temperature, density, and mass of the circumstellar disk associated with Source I are constrained by the SED of H$^{-}$ free-free emission. Still the fitting result shows a significant deviation from the observed flux densities. Combined with the thermal dust graybody SED to explain excess emission at higher frequency, a smaller power-law index of 1.60 for the H$^{-}$ free-free emission is obtained in the SED fitting. The power-law index smaller than 2 would suggest a compact source size or a clumpy structure unresolved with the present study. Future higher resolution observations with ALMA are essential to reveal more detailed spatial structure and physical properties of Source I.
Read full abstract