Modeling fecal contamination in water bodies is of importance for microbiological risk assessment and management. This study investigated the transport of fecal coliform (e.g., up to 2.1 × 106 CFU/100 ml at the Zhongshan Bridge due to the main point source from the Xinhai Bridge) in the Danshuei River estuarine system, Taiwan with the main focus on assessing model uncertainty due to three relevant parameters for the microbial decay process. First, a 3D hydrodynamic-fecal coliform model (i.e., SCHISM-FC) was developed and rigorously validated against the available data of water level, velocity, salinity, suspended sediment and fecal coliform measured in 2019. Subsequently, the variation ranges of decay reaction parameters were considered from several previous studies and properly determined using the Monte Carlo simulations. Our analysis showed that the constant ratio of solar radiation (α) as well as the settling velocity (vs) had the normally-distributed variations while the attachment fraction of fecal coliform bacteria (Fp) was best fitted by the Weibull distribution. The modeled fecal coliform concentrations near the upstream (or downstream) stations were less sensitive to those parameter variations (see the smallest width of confidence interval about 1660 CFU/100 ml at the Zhongzheng Bridge station) due to the dominant effects of inflow discharge (or tides). On the other hand, for the middle parts of Danshuei River where complicated hydrodynamic circulation and decay reaction occurred, the variations of parameters led to much larger uncertainty in modeled fecal coliform concentration (see a wider confidence interval about 117,000 CFU/100 ml at the Bailing Bridge station). Overall, more detailed information revealed in this study would be helpful while the environmental authority needs to develop a proper strategy for water quality assessment and management. Owing to the uncertain decay parameters, for instance, the modeled fecal coliform impacts at Bailing Bridge over the study period showed a 25 % difference between the lowest and highest concentrations at several moments. For the detection of pollution occurrence, the highest to lowest probabilities for a required fecal coliform concentration (e.g., 260,000 CFU/100 ml over the environmental regulation) at Bailing Bridge was possibly greater than three.
Read full abstract