Evidence is presented for the recent, horizontal transfer of a self-splicing, homing group II intron from a cyanobacteria to the chloroplast genome of Euglena myxocylindracea. The psbA gene of E.myxocylindracea was found to contain a single 2566 nt group II intron with a gene in domain 4 for a 575 amino acid maturase. The predicted secondary structure and tertiary interactions of the group II intron, as well as the derived maturase primary sequence, most closely resemble the homing intron of the cyanobacterium Calothrix and the rnl introns of Porphyra purpurea mitochondria, while being only distantly related to all other Euglena plastid introns and maturases. All main functional domains of the intron-encoded proteins of known homing introns are conserved, including reverse transcriptase domains 1-7, the zinc finger domain and domain X. The close relationship with cyanobacterial introns was confirmed by phylogenetic analysis. Both the full-length psbA intron and a Delta-maturase variant self-splice in vitro in two independent assays. The psbA intron is the first example of a self-splicing chloroplast group II intron from any organism. These results support the conclusion that the psbA intron is the result of a recent horizontal transfer into the E.myxocylindracea chloroplast genome from a cyanobacterial donor and should prompt a reconsideration of horizontal transfer mechanisms to account for the origin of other chloroplast genetic elements.
Read full abstract