Curvilinear magnetic structures often have unique magnetic behavior compared to their rectilinear counterparts. This is due to the unique curvilinear boundary conditions as well as the curvature induced Dzyaloshinskii–Moriya-like interaction and the curvature induced anisotropy. The effects of a curvilinear geometry are best studied in 3D structures, where the curvature can have a significant spatial extent. Of these 3D structures, the simplest structure to study is the cylindrical nanowire. Here, we have simulated the magnetization reversal in cylindrical NiFe nanowires and present in situ Lorentz TEM images to support the findings of the simulations. We studied the domain formation and reversal of nanowires with two distinct diameters that give rise to a different reversal behavior. We have, thus, found that the zero-field magnetization configuration in these wires can take on a double helix type of configuration. The reversal in these structures then proceeds through the winding and unwinding of these helical configurations rather than through domain wall propagation.