Humans understand, think, and express themselves through metaphors. The current paper emphasizes the importance of identifying the metaphorical language used in online health communities (OHC) to understand how users frame and make sense of their experiences, which can boost the effectiveness of counseling and interventions for this population. We used a web crawler to obtain a corpus of an online depression community. We introduced a three-stage procedure for metaphor identification in a Chinese Corpus: (1) combine MIPVU to identify metaphorical expressions (ME) bottom-up and formulate preliminary working hypotheses; (2) collect more ME top-down in the corpus by performing semantic domain analysis on identified ME; and (3) analyze ME and categorize conceptual metaphors using a reference list. In this way, we have gained a greater understanding of how depression sufferers conceptualize their experience metaphorically in an under-represented language in the literature (Chinese) of a new genre (online health community). Main conceptual metaphors for depression are classified into PERSONAL LIFE, INTERPERSONAL RELATIONSHIP, TIME, and CYBERCULTURE metaphors. Identifying depression metaphors in the Chinese corpus pinpoints the sociocultural environment people with depression are experiencing: lack of offline support, social stigmatization, and substitutability of offline support with online support. We confirm a number of depression metaphors found in other languages, providing a theoretical basis for researching, identifying, and treating depression in multilingual settings. Our study also identifies new metaphors with source-target connections based on embodied, sociocultural, and idiosyncratic levels. From these three levels, we analyze metaphor research's theoretical and practical implications, finding ways to emphasize its inherent cross-disciplinarity meaningfully.
Read full abstract