Most existing optic disc (OD) and cup (OC) segmentation models are biased to the dominant size and easy class (normal class), resulting in suboptimal performances on glaucoma-confirmed samples. Thus, these models are not optimal choices for assisting in tracking glaucoma progression and prognosis. Moreover, fully supervised models employing annotated glaucoma samples can achieve superior performances, although restricted by the high cost of collecting and annotating the glaucoma samples. Therefore, in this paper, we are dedicated to developing a glaucoma-specialized model by exploiting low-cost annotated normal fundus images, simultaneously adapting various common scenarios in clinical practice. We employ a contrastive learning and domain adaptation-based model by exploiting shared knowledge from normal samples. To capture glaucoma-related features, we utilize a Gram matrix to encode style information and the domain adaptation strategy to encode domain information, followed by narrowing the style and domain gaps between normal and glaucoma samples by contrastive and adversarial learning, respectively. To validate the efficacy of our proposed model, we conducted experiments utilizing two public datasets to mimic various common scenarios. The results demonstrate the superior performance of our proposed model across multi-scenarios, showcasing its proficiency in both the segmentation- and glaucoma-related metrics. In summary, our study illustrates a concerted effort to target confirmed glaucoma samples, mitigating the inherent bias issue in most existing models. Moreover, we propose an annotation-efficient strategy that exploits low-cost, normal-labeled fundus samples, mitigating the economic- and labor-related burdens by employing a fully supervised strategy. Simultaneously, our approach demonstrates its adaptability across various scenarios, highlighting its potential utility in both assisting in the monitoring of glaucoma progression and assessing glaucoma prognosis.
Read full abstract