This study aims to investigate metabolic activities of psoralidin in human liver microsomes( HLM) and intestinal microsomes( HIM),and to identify cytochrome P450 enzymes( CYPs) and UDP-glucuronosyl transferases( UGTs) involved in psoralidin metabolism as well as species differences in the in vitro metabolism of psoralen. First,after incubation serial of psoralidin solutions with nicotinamide adenine dinucleotide phosphate( NADPH) or uridine 5'-diphosphate-glucuronic acid( UDPGA)-supplemented HLM or HIM,two oxidic products( M1 and M2) and two conjugated glucuronides( G1 and G2) were produced in HLM-mediated incubation system,while only M1 and G1 were detected in HIM-supplemented system. The CLintfor M1 in HLM and HIM were 104. 3,and57. 6 μL·min~(-1)·mg~(-1),respectively,while those for G1 were 543. 3,and 75. 9 μL·min~(-1)·mg~(-1),respectively. Furthermore,reaction phenotyping was performed to identify the main contributors to psoralidin metabolism after incubation of psoralidin with NADPH-supplemented twelve CYP isozymes( or UDPGA-supplemented twelve UGT enzymes),respectively. The results showed that CYP1 A1( 39. 5 μL·min~(-1)·mg~(-1)),CYP2 C8( 88. 0 μL·min~(-1)·mg~(-1)),CYP2 C19( 166. 7 μL·min~(-1)·mg~(-1)),and CYP2 D6( 9. 1 μL·min~(-1)·mg~(-1)) were identified as the main CYP isoforms for M1,whereas CYP2 C19( 42. 0 μL·min~(-1)·mg~(-1)) participated more in producing M2. In addition,UGT1 A1( 1 184. 4 μL·min~(-1)·mg~(-1)),UGT1 A7( 922. 8 μL·min~(-1)·mg~(-1)),UGT1 A8( 133. 0 μL·min~(-1)·mg~(-1)),UGT1 A9( 348. 6 μL·min~(-1)·mg~(-1)) and UGT2 B7( 118. 7 μL·min~(-1)·mg~(-1)) played important roles in the generation of G1,while UGT1 A9( 111. 3 μL·min~(-1)·mg~(-1)) was regarded as the key UGT isozyme for G2. Moreover,different concentrations of psoralidin were incubated with monkey liver microsomes( MkLM),rat liver microsomes( RLM),mice liver microsomes( MLM),dog liver microsomes( DLM) and mini-pig liver microsomes( MpLM),respectively. The obtained CLintwere used to evaluate the species differences.Phase Ⅰ metabolism and glucuronidation of psoralidinby liver microsomes showed significant species differences. In general,psoralidin underwent efficient hepatic and intestinal metabolisms. CYP1 A1,CYP2 C8,CYP2 C19,CYP2 D6 and UGT1 A1,UGT1 A7,UGT1 A8,UGT1 A9,UGT2 B7 were identified as the main contributors responsible for phase Ⅰ metabolism and glucuronidation,respectively. Rat and mini-pig were considered as the appropriate model animals to investigate phase Ⅰ metabolism and glucuronidation,respectively.