The D-series resolvins formed from docosahexaenoic acid (DHA) work as anti-inflammatory mediators indicating the role of this long-chain polyunsaturated fatty acid in the immune system of mammals. However, such information is still limited in fish. The current study was conducted to evaluate the immunomodulatory effects of graded levels of DHA in common carp Cyprinus carpio by in vitro and in vivo approaches. In the in vitro experiment, the head kidney leukocytes isolated from common carp (body weight = 120.3 ± 12.4 g) were exposed to DHA at 0, 15, and 75 μM (corresponding to DHA0, DHA15, and DHA75) for 1 h; the cells were then immediately exposed to lipopolysaccharides (LPS) at a dose of 10 μg/ml for 4 or 24 h to stimulate the pro-inflammatory responses. The expression of several target genes involved in the inflammatory response (tlr4, nfkb, il-1, il-6, pge2, pla2, nf-kbi, il-10, and tgf-β1) and cytoprotection (hsp70, gpx1, and prdx3) was then assessed by RT-qPCR. Results showed that the pro-inflammatory response induced by LPS was confirmed through the upregulations of il-1 and il-6 expressions in the DHA0 group after 4 h of LPS exposure. The downregulations of il-6 in DHA15 and DHA75 cells after 4 h of LPS exposure compared to DHA0 indicated that the free DHA supplementation in the cell culture medium induced an anti-inflammatory response. Decreases of il-10 and nf-kbi expression were also observed in DHA-treated groups and the highest expression of hsp70 in DHA75 cells. In the in vivo experiment, common carp juveniles (21.7 ± 0.9 g) were fed to apparent satiation with a diet supplemented with DHA at 0, 6, and 20 g/kg for 8 weeks. After the feeding trial, the fish were challenged with Aeromonas veronii at 2.1 × 107 CFU/ml and the fish mortality was then recorded during 14 days. At the end of the feeding trial and the second day of bacterial infection, fish blood samples were collected for haematological parameters while liver and head kidney were used for assaying different immune variables. Results showed that the DHA supplementation in fish diet did not influence the fish growth and other husbandry parameters. The lowest value of fish mortality was recorded in DHA20-fed fish. The positive effects of DHA-supplemented diets were also found in myeloperoxidase (MPO), glutathione (GSH), and catalase (CAT) activities. In conclusion, the results suggest that DHA is able to modulate the inflammatory response in the immune celsl at a dose of 75 μM/mL and to boost disease resistance in common carp fed on a diet supplemented with DHA at 20 g/kg of feed.