Lung adenocarcinoma (LUAD) is a major type of lung cancer worldwide, and under the pandemic coronavirus disease 2019 (COVID-19), its cancer burden is enlarged. This study aimed to explore potential drug targets and potential drugs for developing effective treatments for patients with both lung cancer and COVID-19. The interaction network of molecule compounds-target genes was constructed based on Traditional Chinese Medicines (TCMs) and gene expression data from public databases. The potential effectiveness of drugs was analyzed by molecular docking and molecular dynamics simulation. Western blot, transfection assay, Immunohistochemistry (IHC) staining, and flow cytometry were performed to investigate the function of HSP90AA1 in LUAD cells. Eight target genes (GSK3B, HMOX1, HSP90AA1, ICAM1, MAPK1, PLAU, RELA and TNFSF15.) were identified, and two of them (HSP90AA1 and RELA) were significantly associated with LUAD prognosis. Luteolin was discovered to bind with HSP90AA1. Moreover, in vitro cell experiments demonstrated that HSP90AA1 had higher expression in A549 cells, promoted cell viability and suppressed apoptosis in A549 cells and H1299 cells. HSP90AA1 was a target gene for further designing effective drugs for LUAD patients. Luteolin was a potential drug for treating patients with both LUAD and COVID-19.