To date, CRISPR-based DNA targeting approaches have typically used fusion proteins between full fluorescent reporters and catalytically inactive Cas9 (dCas9) for imaging rather than detection of endogenous genomic DNA sequences. A promising alternative strategy for DNA targeting is the direct biosensing of user-defined sequences at single copy with single-cell resolution. Our recently described DNA biosensing approach using a dual fusion protein biosensor comprised of two independently optimized fragments of NanoLuc luciferase (NLuc) directionally fused to dCas9 paired with user-defined single-guide RNAs (sgRNAs) could allow users to sensitively detect unique copies of a target sequence in individual living cells using common laboratory equipment such as a microscope or a luminescence-equipped microplate reader. Here we describe a protocol for using such a DNA biosensor noninvasively in situ.