A study of the kinetics and mechanism of the reaction between the dinuclear Pt complex [(trans-PtCl(NH(3))(2))(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1) and the 14-mer duplex 5'-d(ATACATG(7)G(8)TACATA)-3'.5'-d(TATG(25)TACCATG(18)TAT)-3' is reported. [(1)H,(15)N]-HSQC NMR was used to follow the reaction at 298 K, pH 5.4. The product is primarily the 5'-5' 1,4-interstrand cross-link between G(8) and G(18) bases and exists in two conformational forms. No evidence for the possible 1,2-intrastrand G(7)G(8) adduct was seen, confirming the preferential formation of interstrand cross-links by these dinuclear complexes. An initial electrostatic association of (15)N-1 with the duplex is indicated by changes in its (1)H/(15)N chemical shifts, followed by aquation of 1 to form the monoaqua monochloro species 2, with a rate constant of 4.00+/-0.03x10(-5) s(-1). Monofunctional binding to the duplex occurs primarily at G(8), the 3' base of the nucleophilic GG grouping, with a rate constant of 1.5+/-0.7 M(-1) s(-1). Changes in the (1)H/(15)N shifts indicate there is an electrostatic interaction between the unbound (PtN(3)Cl) group of the monofunctional adduct and the duplex. No peaks for a transient aquated monofunctional species are seen and closure of 3 to form the 1,4-G(8)G(18) interstrand cross-link (5) was treated as direct, with a rate constant of 4.47+/-0.06x10(-5) s(-1). The G(8)G(18) cross-link was confirmed from analysis of the NOESY NMR spectrum of the final product. Structural perturbations for the 1,4-interstrand cross-link extend over approximately four base-pairs and are similar to those found for a 1,4-interstrand cross-link with a shorter 8-mer -GTAC- sequence. A major distortion was evident for the 5'T (T(17)) adjacent to the platinated G(18), consistent with the findings from the use of chemical probes to investigate the conformation of 1,4-interstrand cross-links.
Read full abstract