This review summarises mutagenesis-related research on the major classes of DNA minor groove binding ligands. These compounds can bind to DNA covalently or non-covalently, and span a range of DNA sequence selectivities. Many of the non-covalent binders show effects on topoisomerase enzymes in mammalian cells, with the bisbenzimidazoles being the most active. Mutagenic effects consistent with topoisomerase inhibition are observed in vitro. Many of these compounds induce aneuploidy and polyploidy, properties which may also contribute to carcinogenic processes. Similarly, uvrA trapping by some minor groove binders may alter mutagenetic processes by inhibiting efficient repair. Distamycin has been shown to enhance the mutagenicity of ethidium bromide in bacteria by an undetermined mechanism. However, the inhibitory effects of minor groove binders on human DNA repair systems have not yet been reported. Hoechst 33258 and distamycin cause chromosome decondensation in both mouse and human cells particularly at heterochromatic regions which are rich in AT content. Various minor groove binders have been shown to induce fragile sites in cultured lymphocytes from susceptible individuals, which may have a propensity to develop particular cancers. Investigation of the relationship between fragile site inducing drugs and chromosomal rearrangements in fragile site carriers has not been investigated but may yield interesting results. Some DNA alkylating minor groove binders can generate lesions extremely toxic to mammalian cells (e.g., CC-1065 and analogues), and induce a range of DNA sequence changes in vivo, both at the site of covalent bonding as well as at surrounding sequences. This may be typical of alkylating minor groove binders which have a binding site size of several base pairs, and which stabilise helical structure. Minor groove binders have effects on gene expression in vitro by inhibiting the sequence selective binding of various transcription factors to DNA. These effects may result in expression or repression of downstream genes also. This class of ligand thus offers the possibility of mutations targeted to specific genes or genomic regions. It will be interesting to determine whether such examples of targeted mutagenesis, as has already been observed with CC-1065 and adozelesin, will result in an enhanced or in a lowered capacity to promote neoplastic disease. However it should be noted that pentamidine, a minor groove binder used in the treatment of AIDS-related PCP, has thus far shown no mutagenic effects in nuclear DNA and only a weak effect in mitochondrial DNA of yeast. These results suggest that minor groove binding does not necessarily lead to mutagenesis.
Read full abstract