Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is characterized by frequent appearance of multiradial chromosomes, which are distinctive chromosome fusions that occur at hypomethylated pericentromeric regions comprising repetitive sequences, in activated lymphocytes. The syndrome is caused by mutations in DNMT3B, ZBTB24, CDCA7, or HELLS. Dr. Motoko Unoki, Medical Institute of Bioregulation, Kyushu University, Japan, was involved in the team to identify the CDCA7 and HELLS genes as causative genes of ICF syndrome. Recent studies including Unoki's studies suggested that de novo DNA methylation is likely defective in patients with ICF syndrome harboring mutations in DNMT3B, whereas accumulating evidence suggests that replication-uncoupled maintenance DNA methylation of late-replicating regions is impaired in patients with ICF syndrome harboring mutations in ZBTB24, CDCA7, or HELLS. ZBTB24 is a transcriptional activator of CDCA7, and CDCA7 and HELLS compose a chromatin remodeling complex and are involved in the maintenance DNA methylation through an interaction with UHRF1 in a feed-forward manner. The latest study by Unoki possibly provided the missing link between DNA hypomethylation and the formation of the abnormal chromosomes; it could occur via aberrant transcription from the hypomethylated regions, followed by pathological R-loop formation. The homologous-recombination dominant condition caused by a defect in non-homologous end joining observed in several types of ICF syndrome could facilitate the formation of multiradial chromosomes.
Read full abstract