IntroductionRAD51 is a pivotal DNA repair gene managing double-stranded DNA break recognition and repair. RAD51 high expression was associated with adverse outcomes in other cancer types. This study aims to investigate the tumor microenvironment and immune landscape in the RAD51 high-expressed Hepatocellular Carcinoma (HCCs). MethodsA total of 467 patients from two large independent cohorts with clinical and transcriptomic data were obtained. The cohort was dichotomized based on the median RAD51 gene expression. xCell and Gene Set Enrichment Analysis (GSEA) were used. ResultsRAD51 high-expressed HCCs were associated with worse recurrence-free, progression-free, disease-specific, and overall survival (all P < 0.05). While RAD51 high-expressed HCCs were associated with intratumoral heterogeneity, homologous recombination deficiency, and fraction altered scores, mutation or neoantigens were not increased in this group. xCell analysis demonstrated inconsistent immune cell infiltration between two cohorts. Cytolytic activity as well as GSEA with immune-related gene sets also demonstrated inconsistent results between two cohorts as well. On the other hand, RAD51 expression was significantly increased in higher-grade tumors, larger tumors, and higher clinical stages. RAD51 high-expressed HCCs were found to have elevated proliferation score. Furthermore, GSEA exhibited significant enrichment of all the cell proliferation–related gene sets in the Hallmark collection, including E2F targets, G2M checkpoint, Mitotic spindle, MYC targets, and MTORC1 signaling consistently in both cohorts (all false discovery rate < 0.25). ConclusionsRAD51 high-expressed HCCs were associated with worse survival and with increased cell proliferation and were not necessarily associated with immune infiltration or inflammation.
Read full abstract