Technological innovation can drive scientific inquiry by allowing researchers to answer questions that were once out of reach. Eukaryotic mRNA synthesis was not so long ago thought of as a deterministic, sequential process in which transcriptional regulators and general transcription factors assemble in an orderly fashion into chromatin to, ultimately, activate RNA polymerase II. Advances in fluorescence microscopy techniques have revealed a much more complex scenario, wherein transcriptional regulators dynamically engage with chromatin in a more stochastic, probabilistic way. In this review, we will concentrate on what fluorescence fluctuation methods have taught us about the journey of transcription factors within live cells. Specifically, we summarized how these techniques have contributed to reshaping our understanding of the mechanism(s) of action of the glucocorticoid receptor, a ligand-regulated transcription factor involved in many physiological and pathological processes. This receptor regulates a variety of gene networks in a context-specific manner and its activity can be quickly and easily controlled by the addition of specific ligands. Thus, it is widely used as a model to study the mechanisms of transcription factors through live-cell imaging.
Read full abstract