The structural organization of the Drosophila melanogaster gene encoding mitochondrial single-stranded DNA-binding protein (mtSSB) has been determined and its pattern of expression evaluated during Drosophila development. The D. melanogaster mtSSB gene contains four exons and three small introns. The transcriptional initiation site is located 22 nucleotides upstream from the initiator translation codon in adults, whereas several initiation sites are found in embryos. No consensus TATA or CAAT sequences are located at canonical positions, although an AT-rich sequence was identified flanking the major transcriptional initiation site. Northern analyses indicated that the mtSSB transcript is present at variable levels throughout development. In situ hybridization analysis shows that maternally deposited mtSSB mRNA is distributed homogeneously in the early embryo, whereas de novo transcript is produced specifically at an elevated level in the developing midgut. Transfection assays in cultured Schneider cells with promoter region deletion constructs revealed that the proximal 230 nucleotides contain cis-acting elements required for efficient gene expression. Putative transcription factor binding sites clustered within this region include two Drosophila DNA replication-related elements (DRE) and a single putative E2F binding site. Deletion and base substitution mutagenesis of the DRE sites demonstrated that they are required for efficient promoter activity, and gel electrophoretic mobility shift analyses showed that DRE binding factor (DREF) binds to these sites. Our data suggest strongly that the Drosophila mtSSB gene is regulated by the DRE/DREF system. This finding represents a first link between nuclear and mitochondrial DNA replication.
Read full abstract