Abstract. The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) was established by the EUMETSAT Council on 3 July 2005, starting activity on 1 September 2005. The Italian Meteorological Service serves as Leading Entity on behalf of twelve European member countries. H-SAF products include precipitation, soil moisture and snow parameters. Some products are based only on satellite observations, while other products are based on the assimilation of satellite measurements/products into numerical models. In addition to product development and generation, H-SAF includes a product validation program and a hydrological validation program that are coordinated, respectively, by the Italian Department of Civil Protection and by the Polish Institute of Meteorology and Water Management. The National Center of Aeronautical Meteorology and Climatology (CNMCA) of the Italian Air Force is responsible for operational product generation and dissemination. In this paper we describe the H-SAF precipitation algorithms and products, which have been developed by the Italian Institute of Atmospheric Sciences and Climate (in collaboration with the international community) and by CNMCA during the Development Phase (DP, 2005–2010) and the first Continuous Development and Operations Phase (CDOP-1, 2010–2012). The precipitation products are based on passive microwave measurements obtained from radiometers onboard different sun-synchronous low-Earth-orbiting satellites (especially, the SSM/I and SSMIS radiometers onboard DMSP satellites and the AMSU-A + AMSU-B/MHS radiometer suites onboard EPS-MetOp and NOAA-POES satellites), as well as on combined infrared/passive microwave measurements in which the passive microwave precipitation estimates are used in conjunction with SEVIRI images from the geostationary MSG satellite. Moreover, the H-SAF product generation and dissemination chain and independent product validation activities are described. Also, the H-SAF program and its associated activities that currently are being carried out or are planned to be performed within the second CDOP phase (CDOP-2, 2012–2017) are presented in some detail. Insofar as CDOP-2 is concerned, it is emphasized that all algorithms and processing schemes will be improved and enhanced so as to extend them to satellites that will be operational within this decade – particularly the geostationary Meteosat Third Generation satellites and the low-Earth-orbiting Core Observatory of the international Global Precipitation Measurement mission. Finally, the role of H-SAF within the international science and operations community is explained.