Since the security of RSA cryptosystem depends on the difficulty of factoring integers, it is the most important problem to factor large integers in RSA cryptosystem. The Lenstra elliptic curve factorization method(ECM) is considered a special purpose factoring algorithm as it is still the best algorithm for divisors not greatly exceeding 20 to 25 digits(64 to 83 bits or so). ECM, however, wastes most time to calculate ∙ mod and so Montgomery and Koyama both give fast methods for implementing ∙ mod . We, in this paper, further analyze Montgomery and Koyama’s methods and propose an efficient algorithm which choose the optimal parameters and reduces the number of multiplications of Montgomery and Koyama’s methods. Consequently, the run time of our algorithm is reduced by 20% or so than that of Montgomery and Koyama’s methods.
Read full abstract