In this paper, a time-varying channel prediction method based on conditional generative adversarial network (CPcGAN) is proposed for time division duplexing/frequency division duplexing (TDD/FDD) systems. CPcGAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information (CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI. The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds.
Read full abstract