Abstract

This paper aims to provide a comprehensive solution for the design, analysis, and optimization of a multiple-antenna non-orthogonal multiple access (NOMA) system for multiuser downlink communication with both time duplex division and frequency duplex division modes. First, we design a new framework for multiple-antenna NOMA, including user clustering, channel state information (CSI) acquisition, superposition coding, transmit beamforming, and successive interference cancellation. Then, we analyze the performance of the considered system, and derive exact closed-form expressions for average transmission rates in terms of transmit power, CSI accuracy, transmission mode, and channel conditions. For further enhancing the system performance, we optimize three key parameters, i.e., transmit power, feedback bits, and transmission mode. Especially, we propose a low-complexity joint optimization scheme, so as to fully exploit the potential of multiple-antenna techniques in NOMA. Moreover, through asymptotic analysis, we reveal the impact of system parameters on average transmission rates, and hence present some guidelines on the design of multiple-antenna NOMA. Finally, simulation results validate our theoretical analysis, and show that a substantial performance gain can be obtained over traditional orthogonal multiple access technology under practical conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call