Targeted gene flow is an emerging conservation approach which involves introducing a cohort of individuals with particular traits to locations where they can produce a conservation benefit. This technique is being proposed to adapt recipient populations to a known threat, but questions remain surrounding how best to maximize conservation outcomes during periods of continuous directional environmental change. Here we introduce a new management objective—to keep the recipient population extant and with maximum diversity of local alleles—and we explore how varying the timing and size of an introduction can maximise this objective. Our results reveal a trade-off between keeping a population extant and maintaining a high level of genetic diversity, but management levers can often optimize this so that nearly 100% of the allelic diversity is preserved. These optimum outcomes sets are highly sensitive to the predicted rate of environmental shift, as well as the level of outbreeding depression in the system.
Read full abstract