Since branch lengths provide important information about the timing and the extent of evolutionary divergence among taxa, accurate resolution of evolutionary history depends as much on branch length estimates as on recovery of the correct topology. However, the empirical relationship between the choice of genes to sequence and the quality of branch length estimation remains ill defined. To address this issue, we evaluated the accuracy of branch lengths estimated from subsets of the mitochondrial genome for a mammalian phylogeny with known subordinal relationships. Using maximum-likelihood methods, we estimated branch lengths from an 11-kb sequence of all 13 protein-coding genes and compared them with estimates from single genes (0.2-1.8 kb) and from 7 different combinations of genes (2-3.5 kb). For each sequence, we separated the component of the log-likelihood deviation due to branch length differences associated with alternative topologies from that due to those that are independent of the topology. Even among the sequences that recovered the same tree topology, some produced significantly better branch length estimates than others did. The combination of correct topology and significantly better branch length estimation suggests that these gene combinations may prove useful in estimating phylogenetic relationships for mammalian divergences below the ordinal level. Thus, the proper choice of genes to sequence is a critical factor for reliable estimation of evolutionary history from molecular data.
Read full abstract