Artificial light at night (ALAN) disrupts biological rhythms across widely diverse organisms. To determine how energy is allocated by animals in different light environments, we investigated the impacts of ALAN on behavior and physiology of diurnal green anole lizards (Anolis carolinensis). Two groups of 24 adult lizards (half males, half females) were maintained in a controlled lab setting for six weeks. One group was exposed to a simulated natural summer light-dark cycle; the other was exposed to ALAN that simulated urban, nocturnal light exposure. After an acclimation period, we conducted four behavioral trials. One trial examined behavioral time allocation over two 24 h periods, and three others were conducted during mid-day and mid-night: open field tests, to examine exploratory behavior; foraging trials, to examine prey consumption; and social interaction trials, to examine same-sex interactions. We then measured each lizard's snout-vent length and mass of its body, abdominal fat pads, liver, and, for males, testes. Lizards exposed to ALAN were more likely to be awake at night, using nocturnal light to explore, forage, and display to conspecifics. However, during the day, ALAN lizards were less likely to be awake, slower to move, and females displayed less frequently. ALAN lizards had heavier fat pads and testes, but ALAN did not impact body mass, liver mass, or snout-vent length. In sum, ALAN appears to cause a broad shift towards increased nocturnal activity and may alter metabolic and reproductive processes. Future work should examine the fitness consequences of these behavioral and physiological changes.