The world’s forests are being increasingly disturbed from exposure to the compounding impacts of land use and climate change, in addition to natural disturbance regimes. Boreal forests have a lower level of deforestation compared to tropical forests, and while they have higher levels of natural disturbances, the accumulated impact of forest management for commodity production coupled with worsening fire weather conditions and other climate-related stressors is resulting in ecosystem degradation and loss of biodiversity. We used satellite-based time-series analysis of two canopy indices—canopy photosynthesis and canopy water stress—to calculate an index that maps the relative stability of forest canopies in the Canadian provinces of Ontario and Quebec. By drawing upon available spatial time-series data on logging, wildfire, and insect infestation impacts, we were able to attribute the causal determinants of areas identified as having unstable forest canopy. The slope of the two indices that comprise the stability index also provided information as to where the forest is recovering from prior disturbances. The stability analyses and associated spatial datasets are available in an interactive web-based mapping app. that can be used to map disturbed forest canopies and the attribution of disturbances to human or natural causes. This information can assist decision-makers in identifying areas that are potentially ecologically degraded and in need of restoration and those stable areas that are a priority for protection.