Abstract

AbstractThe effects of nitrogen (N) deposition on forests largely depend on the ecosystem N status and the fates of deposited N. Boreal forests are typically N-limited ecosystems and are considered to be more efficient in retaining deposited N relative to temperate and tropical forests. As a primary disturbance in boreal forests, wildfires may alleviate N limitation in the burned ecosystem and increase mineralization, resulting in the altered outcomes of the N deposition. In order to explore the effects of a severe wildfire on the retention of deposited N, we investigated the fates of newly deposited N in burned and unburned boreal larch forests by applying 15NH4NO3 tracers to the forest floors. Results showed that total ecosystem retention for the deposited N was 60% in the forest recovering from a severe wildfire burned five years ago, significantly lower than in the unburned mature forest (89%). The difference was mainly attributed to the substantially lower retention in vegetation (8.3%) in the burned site than in the unburned forest (32.4%), as tracer recoveries in soil were similar (51.2 and 56.6%, respectively). Although most 15N tracer was immobilized in organic soil in both burned and unburned forests (33 and 47%, respectively), a noticeably higher amount of 15N was found in mineral soil in the burned forest (19%) than in the unburned forest (10%), suggesting mineral soil as a significant sink for N deposition in the burned forest. A higher total 15N retention in the unburned forest implies that more new N input may stimulate C sequestration and promote the productivity of the Eurasian boreal forest under the background of atmospheric N deposition. However, a considerable amount of deposited N may be lost from the disturbed boreal larch forest ecosystem after a severe wildfire.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call