This research assesses the potential of a mobile thermochemical storage system, the mobile heat battery (M-HB), for decarbonizing a low-temperature district heating (DH) system in the Netherlands. The assessment is built on a case study where the M-HB is used to transport waste heat from different sources to a neighborhood interface of a DH system. This case study utilizes a simulation-based methodology to calculate the emissions from grid electricity, DH, and M-HB transport and charging. Building performance simulation is used as the main experimental method in combination with both empirical data and theoretical assumptions. Various system operational strategies and uncertain factors are explored, and waste heat sources are screened by different decarbonization targets. Findings indicate that using the M-HB can reduce the operational carbon emissions by up to 80 %, from approximately 60–70 KgCO2/GJ of the system without M-HB to around 13 KgCO2/GJ in optimal scenarios. Emissions from M-HB transport and charging are identified as more influential to the decarbonization potential than other considered factors, which addresses the significance of choosing proper waste heat sources. Despite some limitations from data availability and assumptions, this work identifies both opportunities and challenges for using M-HB to decarbonize DH systems.