The motion of a spherical colloidal particle with spontaneous electrochemical reactions occurring on its surface in an ionic solution subjected to an applied magnetic field is analyzed for an arbitrary zeta potential distribution. The thickness of the electric double layer adjacent to the particle surface is assumed to be much less than the particle radius. The solutions of the Laplace equations governing the magnetic scalar potential and electric potential, respectively, lead to the magnetic flux and electric current density distributions in the particle and fluid phases of arbitrary magnetic permeabilities and electric conductivities. The Stokes equations modified with the Lorentz force contribution for the fluid motion are dealt by using a generalized reciprocal theorem, and closed-form formulas for the translational and angular velocities of the colloidal sphere induced by the magnetohydrodynamic effect are obtained. The dipole and quadrupole moments of the zeta potential distribution over the particle surface cause the particle translation and rotation, respectively. The induced velocities of the particle are unexpectedly significant, and their dependence on the characteristics of the particle-fluid system is physically different from that for electromagnetophoretic particles or phoretic swimmers.
Read full abstract