High density and high semiconducting-purity single-walled carbon nanotube array (A-CNT) have recently been demonstrated as promising candidates for high-performance nanoelectronics. Knowledge of the structures and arrangement of CNTs within the arrays and their interfaces to neighboring CNTs, metal contacts, and dielectrics, as the key components of an A-CNT field effect transistor (FET), is essential for device mechanistic understanding and further optimization, particularly considering that the current technologies for the fabrication of A-CNT wafers are mainly laboratory-level solution-based processes. Here, we conduct a systematic investigation into the microstructures of A-CNT FETs mainly via cross-sectional high-resolution transmission electron microscopy and tentatively establish a framework consisting of up to 11 parameters which can be used for structure-side quality evaluation of the A-CNT FETs. The parameter ensemble includes the diameter, length (or terminal), and density distribution of CNTs, radial deformation of CNTs, array alignment defects, surface crystallography facets of contact metal, thickness distribution of high-k dielectrics (HfO2), and the contact ratios for the CNT-CNT, CNT-metal, CNT-dielectric, and CNT-substrate interfaces. Enriched array alignment defects, i.e., bundle, stacking, misorientation, and voids, are observed with a total ratio sometimes up to ∼90% in pristine A-CNTs and even up to ∼95% after the device fabrication process. Thus, they are suggested as the prevalent performance-limiting factors for A-CNT FETs. Complex interfacial structures are observed at the CNT-CNT, CNT-metal contact, and CNT-high-k dielectric interfaces, making the local environment and the property of each component CNT involved in an A-CNT FET distinct from others in terms of the diameters, radial deformation, and interactions with the local surroundings (mainly through van der Waals interactions). The present study suggests further improvements on the fabrication technology of A-CNT wafers and devices and mechanistic investigations into the impacts of complex array alignment defects and interface structures on the electrical performance of A-CNT FETs as well.
Read full abstract