Multipartite Einstein-Podolsky-Rosen (EPR) steering has been recognized as an essential resource for secure quantum communication tasks composed of several spatially separated parties who cannot be fully trusted. Nevertheless, this resource cannot be distributed arbitrarily over many parties; for instance, two independent players cannot simultaneously steer the third party by two-setting measurements. This feature is referred to as monogamy of steering, which ensures the security of quantum cryptographic protocols and is thus a very desired property to investigate for multipartite steering. Here, we propose symmetric and asymmetric structures of cascaded four-wave mixing of rubidium atoms to generate versatile quadripartite EPR steering and investigate four distinct types of monogamy relations of Gaussian steering. We find that the distribution constraint described by one of the monogamy relations can be lifted only for the quadripartite steering created by the symmetric setup. This result paves the way for a better understanding of the distribution rules of multipartite EPR steering and its potential applications for secure quantum communication.
Read full abstract