In this paper, we present a novel on-demand modular robotic photoacoustic tomography (PAT) probe integrated into an endoscopic device, potentially for deep intragastric sensing. The proposed solution offers a plug-and-play approach through the use of meso-scale steerable endoscopy and a new ‘snap-on’ 3D robotic PAT probe that can reconfigure the geometry of the intracorporeal light delivery, inspired by an umbrella structure. Specifically, using the limited esophageal access, steerable endoscopy allows navigation and advancement of a distally mounted robotic add-on for PAT that is folded until it reaches the deep-seated gastric lesion. Once the tip is positioned near the lesion site in the gastric cavity, there is ample working space for the robotic probe to adjust its umbrella-like unfolded shape. This allows fine-tuning of the laser delivery orientation of the fiber bundles to achieve the lesion-specific light delivery scheme. This design allows volumetric imaging of the intragastric PAT with enhanced sensitivity. To evaluate the performance of the modular robotic PAT probe, we performed a simulation analysis of the light intensity and ultrasound field distribution. The simulation results show that the robotic probe is feasible for intracorporeal PAT imaging. In addition, we printed a 3D model of a human stomach containing a simulated gastric tumour. Both the phantom and ex vivo experimental results validate the feasibility of the proposed robotic PAT probe.
Read full abstract