Abstract Montane snowpack is a vital source of water in the Western United States. Here, we use a large-ensemble approach to evaluate the agreement across 124 snow water equivalent (SWE) projections with statistically downscaled forcing between end-of-century (2076 – 2095) and early 21st century (2106 – 2035) periods. Comparisons were performed on dates corresponding with the end of winter (15 April) and mid-spring snowmelt (15 May) in five western US domains. Using 1) the percent change to end-of-century SWE across different ensembles of snow projections, and 2) the shift between early 21st century and end-of-century SWE distributions for each snow projection, we identified relationships between projections that were consistent across each domain. In low to mid-elevations, end-of-century SWE decreases were 48% and larger on 15 April. These regions had projected changes to SWE that were both high-confidence and in relative agreement across projections. Despite this, the majority of 15 April SWE volume existed in higher elevations where the magnitude and direction (positive or negative) of SWE changes were most uncertain. The results of this study show that large-ensemble approaches can be used to measure coherence between snow projections and identify 1) the highest-confidence changes to future snow water resources, and 2) the locations and periods where and when improvements to snow projections would most benefit estimates of future snow water resources.
Read full abstract