In the vegetation experiment, the plutonium, micro- and macroelements migration in the “soil–agricultural plant” system depending on soil moisture in the range from 15 to 40٪ of absolute soil moisture were studied. The content of 239Pu was analyzed by α-spectrometry with preliminary radiochemical isolation. The elemental composition was analyzed by the ICP-MS and ICP-AES methods. Beans (Fabaceae) variety “Amber” were used as a test culture. The plutonium transfer factor obtained in the vegetation experiments are in the range of of 5.3×10–4–1.5×10–2, with an average value of 5.4×10–3 for the aboveground part of bean and range of 4.5×10–2–2.7×10–1, with an average of 1.6×10–1 for bean roots. It was determined that the distribution of plutonium, micro and macro elements in the vegetative organs of plants is not equally, the transfer factor of plutonium for the aboveground part of plants is lower than for the root part. It has been established that the accumulation of plutonium, micro- and macroelements, depending on soil moisture, is different for the organs of beans. The dependence of plutonium accumulation by plants on soil moisture is significantly higher than for other considered elements. A decrease in the coefficient of accumulation of plutonium in the aerial part of the beans is recorded with an increase in soil moisture up to two orders of magnitude. There is a trend towards a slight decrease in the accumulation coefficients of Fe, Mg, Mn, Cr, Mo, Ni, Co, Cu. For the root system of beans, a clear dependence of the accumulation of the considered elements on soil moisture is not observed.
Read full abstract