Based on the data of maximum daily near-surface air temperature (MSAT) taken from 186 meteorological stations of Ukraine the parameters of extremality with relation to maximum air temperature for different time periods as well as deviations between them during cold and warm periods of the year were calculated. Regionalization of Ukraine was carried out in order to identify climate-vulnerable regions by means of comparison, overlapping and match of the areas with the highest values towards selected extremality thresholds. The conclusion about general increase in extremality over the last decade with relation to a climatic standard is made, the areas with the greatest vulnerability are outlined, and the areas with increase in extremality degree are identified. During both periods of the year certain areas in the southern, central and eastern parts of Ukraine are considered, based on maximum air temperature data, as the most vulnerable ones. During both periods of the year over 2001-2010, as compared to 1991-2000, increase of recurrence of extreme values of average maximum of air temperature was observed: in March and December during the cold period and also from May to July, and in case of EHMP event – in August.
 Distribution of maximum air temperature of the EHMP category, in comparison to the category of extreme values, specifies and localizes the regions with the greatest vulnerability. The areas of the highest vulnerability during the cool period comprise the extreme west, south-western and southern regions and during the warm period – southern, south-eastern regions and the extreme east of Ukraine. The spatial distribution of the extreme values of the MSAT for the warm period has a predominantly meridional orientation.
 During both periods of the year regions in the south (areas of Black Sea region, Crimea, boundary subregions in the south) areas in the east and center of Ukraine affected by extreme MSAT values are the most vulnerable; in 2010-2014 this influence intensified. Increase in the vulnerability based on the maximum air temperature occurs on the background of certain changes in the atmospheric circulation, under conditions of anticyclonic fields prevalence throughout the year along with increase of the temporal exposure to the elementary synoptic process. On the other hand, the aforementioned increase of recurrence of extreme hydrometeorological phenomena is a consequence of sharp changes of synoptic situation, which is especially the case after a period of settled weather. The conclusion that atmospheric circulation is a main agent responsible for extreme weather and that it is not studied completely so far was made.
Read full abstract