We provide textural, geochemical, and mineralogical data on a thin, silty deposit that unconformably mantles glaciated uplands in the eastern Upper Peninsula of Michigan. Previous research on this deposit, which we hypothesize to be loess, is nonexistent. The uplands were islands or narrow peninsulas within one or more glacial lakes. We compare the distribution, likely source and nature of the 20–60 cm thick silty mantle by using the loess formation model of Mason et al. [Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223–236], which focuses on the generation of eolian silt by saltating sand across upwind, barren surfaces. Parabolic dunes, with arms open to the NW, are common on former lake floors upwind of the silt-mantled uplands, attesting to the strength and direction of paleowinds. The abrupt termination of the dunes at the footslopes of the uplands, associated with silt deposition on upland soil surfaces in downwind locations, are both consistent with the model of Mason et al. [Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223−236]. Sediments on former lake floors contain abundant strata of fine/medium sand and silt, and thus are likely sources for the silt and dune sand. The cap, dune and lake sediments are similar along many different geochemical axes, whereas the substrate sediment, i.e., the drift below the cap, is unique. Cap sediments, normally containing roughly 30% silt, are enriched in quartz and depleted in Ti and Zr, relative to dune sediment. The dune sediment, a more residual eolian deposit, is enriched in Ti and Zr, relative to the cap, probably due to its greater abundance of heavy minerals. Therefore, we conclude that the silty cap is loess that was deflated from abandoned lake floors after nearby glacial lakes drained, probably contemporaneously with dune migration across the former lake floors.