Forests are crucial in delivering ecosystem services that underpin human well-being and biodiversity conservation. However, these vital ecosystems are threatened by forest degradation and rapid urbanisation. This study addresses this challenge by proposing a comprehensive framework for mapping natural forests at the municipal scale. The framework integrates remote sensing techniques with machine learning algorithms to provide valuable insights into the extent of natural forests within the eThekwini Municipality. The study utilised Landsat 7, Landsat 8, and Landsat 9 satellite imagery to analyse and map the historical and current distribution of natural forests. Five spectral indices, namely, Normalized Differential Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Index Green (CIG), Enhanced Vegetation Index (EVI), and Enhanced Vegetation Index-2 (EVI-2), which were calculated from Landsat bands, were employed in the analysis. Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and Extreme Gradient Boosting (XGBoost) machine learning algorithms were used to model forest distribution. Accuracy was assessed through confusion matrices, Receiver Operating Characteristic (ROC) Curves, area under the ROC curve (AUC), and the F1 scores. LightGBM achieved the highest overall accuracy (90.76%), followed by CatBoost (89.56%) and XGBoost (84.34%). LightGBM also obtained the best F1 score (90.76%). These findings highlight LightGBM's effectiveness in classifying natural forests, making it the preferred model for mapping the historical extent of natural forests in the eThekwini Municipality. However, classifications based on Landsat 7 significantly underestimated the extent of natural forests within the study area, whereas Landsat 8 and Landsat 9 data revealed an increase in natural forests from 2015 to 2023. These findings will guide effective and targeted forest rehabilitation and restoration efforts, ensuring the preservation and enhancement of forest ecosystem services.