The nature of the mechanism of the simultaneous generation of donor–acceptor pairs under heavy doping of n-ZrNiSn intermetallic semiconductor with the Ga acceptor impurity is established. Such spatial arrangement in the crystal lattice of ZrNiSn1–xGa x is found when the rate of movement of the Fermi level eF found from calculations of the density distribution of electron states coincides with that experimentally established from dependences lnρ(1/T). It is shown that when the Ga impurity atom (4s24p1) occupies the 4b sites of Sn atoms (5s25p2), structural defects of both acceptor nature and donor nature in the form of vacancies in the 4b site are simultaneously generated. The results are discussed in the scope of the Shklovskii–Efros model of a heavily doped and compensated semiconductor.
Read full abstract