Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e., the type and number of organic substituents. Each species thus exhibits distinct toxicity profiles and varying binding affinities to environmental colloids, which influence their mobility, bioavailability, and environmental impacts. To date, however, most studies addressed speciation and colloidal characterization separately, leaving the combined determinations of organometallics along with their carrier colloids largely elusive. Here, we develop and validate an on-line measurement system to quantify the adsorption dynamics of 10 OT species on natural colloidal particles (<500 nm). The approach integrates a versatile fractionation technique (AF4), with a state-of-the-art multi-element analyzer (ICP-ToF-MS), achieving Sn detection limits as low as 6.0 ng/L. The method separates colloid-free OT species from those bound to colloids and enables the determination of OT interactions with distinct colloidal fractions. Validated in both fractionation and detection, the method provides reliable data that could elucidate the species-specific and temporal aspects of species-colloids adsorption processes. The results feature comparative studies of 10 OT species, offering critical insights into OT mobility and distribution in environmental systems.
Read full abstract