Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control gonadal function in mammalian and many non-mammalian vertebrates through the interaction with their receptors, FSHR and LHR. Although the same is true for some reptilian species, in Squamata (lizards and snakes) there is no definitive evidence for the presence of either two distinct gonadotropins or two distinct gonadotropin receptors. Our aim was to characterize the gonadotropin receptor(s) of the Bothrops jararaca snake. Using a cDNA library from snake testis and amplification of the 5 ′-cDNA ending, we cloned a cDNA related to FSHR. Attempts to clone a cDNA more closely related to LHR were unsuccessful. Expression of FSHR mRNA was restricted to gonadal tissues. The snake FSHR is a G protein-coupled receptor with 673 amino acids, and the aminoterminal domain with 346 amino acids consists of a nine leucine-rich repeat-containing subdomain (LRR) flanked by two cysteine-rich subdomains. The β-strands in the LRR are conserved with exception of the third, a region that may be important for FSH binding. In contrast with mammalian, avian and amphibian FSHRs, the snake FSHR presents amino acid deletions in the carboxyterminal region of the extracellular domain which are also seen in fish and lizard FSHRs. cAMP assays with the recombinant protein transiently expressed in HEK-293 cells showed that the snake FSHR is more sensitive to human FSH (hFSH) than to human chorionic gonadotropin. Phylogenetic analysis indicated that the squamate FSHRs group separately from mammalian FSHRs. Our data are consistent with the apparently unique gonadotropin-receptor system in Squamata reptilian subgroup. Knowledge about the snake FSHR structure may help identify structural determinants for receptor function.
Read full abstract