Plant species occupy distinct niches along a nitrogen-to-phosphorus (N:P) gradient, yet there is no general framework for belowground nutrient acquisition traits in relation to N or P limitation. We retrieved several belowground traits from databases, placed them in the "root economics space" framework, and linked these to a dataset of 991 plots in Eurasian herbaceous plant communities, containing plant species composition, aboveground community biomass and tissue N and P concentrations. Our results support that under increasing N:P ratio, belowground nutrient acquisition strategies shift from "fast" to "slow" and from "do-it-yourself" to "outsourcing", with alternative "do-it-yourself" to "outsourcing" strategies at both ends of the spectrum. Species' mycorrhizal capacity patterns conflicted with root economics space predictions based on root diameter, suggesting evolutionary development of alternative strategies under P limitation. Further insight into belowground strategies along nutrient stoichiometry is crucial for understanding the high abundance of threatened plant species under P limitation.