Abstract Background: Response to checkpoint blockade may be dependent on tumor mutational load and the presence of antigen-specific effector T cells in the tumor microenvironment; however, how blockade modulates these features during therapy is unclear. We assessed genomic changes in tumors from patients (pts) with advanced melanoma receiving nivolumab (nivo) who progressed on ipilimumab (ipi-P) or were ipi-naive (ipi-N). Methods: Tumor biopsies were collected pretreatment and 4 weeks post first nivo dose from ipi-N or ipi-P pts treated with nivo 3 mg/kg Q2W in the phase 1 open-label CA209-038 study (NCT01621490). Biopsies from 68 pts were analyzed by whole exome, transcriptome, and/or TCR sequencing (paired biopsies from 41, 42, and 34 pts, respectively). Results: Objective response rate (ORR) in the overall cohort (n=85) was 27% with similar ORR in ipi-N and ipi-P cohorts. In the genomic cohort (n=68), ORR was 23% with a similar number of complete or partial responses (CR/PR) in ipi-N and ipi-P pts (n=7 and n=8, respectively). Prior to treatment, mutational and neoantigen load were comparable, regardless of previous treatment. Following nivo treatment, both mutational and neoantigen load were reduced 5-fold in pts who responded (CR/PR; n=9) and 1.2-fold in pts with stable disease (SD, n=13) compared with a 1.1-fold increase in pts with progressive disease (PD, n=19). Intratumoral heterogeneity analysis before and after nivo demonstrated that CR/PR pts generally lost tumor mutation clones/subclones. Novel tumor mutation clones were observed in on-treatment samples from 2 CR/PR pts and all pts who progressed on nivo. Transcriptome analyses revealed significant increases in distinct tumor immune cell subsets (CD8+ T cells and NK cells) and immune checkpoint gene expression (LAG3, CTLA4, PCDC1, and CD274 [PD-L1]) following nivo, which were more pronounced in pts with CR/PR vs PD (log2 fold-changes of 1.24, 1.07, 1.71, and 0.74, respectively). Consistent with the transcriptome analyses, tumor-infiltrating lymphocytes, as assessed by immunohistochemistry, generally increased following nivo in pts who responded: 2.8 vs 1.9-fold change in CR/PR/SD vs PD in the ipi-P cohort; 4.8 vs 1.8-fold change in CR/PR/SD vs PD in the ipi-N cohort. Differences in treatment-related TCR repertoire diversity changes were apparent between pts who responded within the ipi-N and ipi-P cohorts: a decrease in the evenness of T-cell clonotype distribution was observed among pts with CR/PR/SD relative to pts with PD in the ipi-N cohort (P=0.036), but not in the ipi-P cohort. Conclusion: Nivo and ipi modulate T-cell repertoire and tumor mutational heterogeneity in pts with advanced melanoma, presenting potential mechanisms of action underlying successful nivo therapy. These data also show that prior ipi treatment may influence biological response to nivo, but further investigation is warranted. Citation Format: Timothy A. Chan, Nadeem Riaz, Jonathan J. Havel, Vladimir Makarov, Alexis Desrichard, Jennifer S. Sims, F. Stephen Hodi, Salvador Martín-Algarra, William H. Sharfman, Shailender Bhatia, Wen-Jen Hwu, Thomas F. Gajewski, Craig L. Slingluff, Sviatoslav M. Kendall, Han Chang, John-William Sidhom, Jonathan P. Schneck, Nils Weinhold, Christine E. Horak, Walter J. Urba. Immunogenomic analyses of tumor cells and microenvironment in patients with advanced melanoma before and after treatment with nivolumab [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2988. doi:10.1158/1538-7445.AM2017-2988