Although the impact of SARS-CoV-2 in the lung has been extensively studied, the molecular regulators and targets of the host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. This is in part ascribed to the use of non-primary cell systems, overreliance on single-cell gene expression profiling that not ultimately reflect protein activity and bias toward the downstream effects rather than their mechanistic determinants. Here we address these issues by network-based analysis of single cell transcriptomic profiles of pathophysiologically relevant human adult basal, ciliated and secretory cells to identify master regulator (MR) protein modules controlling their SARS-CoV-2-mediated reprogramming. This uncovered chromatin remodeling, endosomal sorting, ubiquitin pathway as well as proviral factors identified by CRISPR analyses as components of the host response collectively or selectively activated in these cells. Large-scale perturbation assays, using a clinically-relevant drug library, identified 11 drugs able to invert the entire MR signature activated by SARS-CoV-2 in these cell types. Leveraging MR analysis and perturbational profiles of human primary cells, represents a novel mechanism-based approach and resource that can be directly generalized to interrogate signatures of other airway conditions for drug prioritization.