Abstract
This study aims to assess the effects of varying an ethanol co-solvent on the deposition of drug particles in severe asthmatic subjects with distinct airway structures and lung functions using computational fluid dynamics. The subjects were selected from two quantitative computed tomography imaging-based severe asthmatic clusters, differentiated by airway constriction in the left lower lobe. Drug aerosols were assumed to be generated from a pressurized metered-dose inhaler (MDI). The aerosolized droplet sizes were varied by increasing the ethanol co-solvent concentration in the MDI solution. The MDI formulation consists of 1,1,2,2-tetrafluoroethane (HFA-134a), ethanol, and beclomethasone dipropionate (BDP) as the active pharmaceutical ingredient. Since HFA-134a and ethanol are volatile, both substances evaporate rapidly under ambient conditions and trigger condensation of water vapor, increasing the size of aerosols that are predominantly composed of water and BDP. The average deposition fraction in intra-thoracic airways for severe asthmatic subjects with (or without) airway constriction increased from 37%±12 to 53.2%±9.4 (or from 20.7%± 4.6 to 34.7%±6.6) when the ethanol concentration was increased from 1 to 10%wt/wt. However, when the ethanol concentration was further increased from 10 to 20%wt/wt, the deposition fraction decreased. This indicates the importance of selecting appropriate co-solvent amounts during drug formulation development for the treatment of patients with narrowed airway disease. For severe asthmatic subjects with airway narrowing, the inhaled aerosol may benefit from a low hygroscopic effect by reducing ethanol concentration to penetrate the peripheral region effectively. These results could potentially inform the selection of co-solvent amounts for inhalation therapies in a cluster-specific manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have