Non-native sea lavenders (Limonium spp.) are invasive in salt marshes of southern California and were first documented in the San Francisco Estuary (the estuary) in 2007. In this study, we mapped distributions of L. ramosissimum subsp. provinciale (LIRA) and L. duriusculum within the estuary and investigated how the invasion potential of the more common species, LIRA, varies with elevation and edaphic conditions. We contacted colleagues and conducted field searches to find and then map sea lavender populations. In addition, we measured LIRA’s elevational range at three salt marshes. Across this range we measured (1) soil properties: salinity, moisture, bulk density, and texture; and (2) indicators of invasion potential: LIRA size, seed production, percent cover, spread (over 1 year), recruitment, and competition with native halophytes (over 6 months). We found LIRA in 15,144 m2 of upper salt marsh habitat in central and south San Francisco bays and L. duriusculum in 511 m2 in Richardson and San Pablo bays. LIRA was distributed from mean high water (MHW) to 0.42 m above mean higher high water (MHHW). In both spring and summer, soil moisture and salinity were lowest at higher elevations within LIRA’s range, which corresponded with greater rosette size, inflorescence and seed production (up to 17,400 seeds per plant), percent cover, and recruitment. LIRA cover increased on average by 11% in 1 year across marshes and elevations. Cover of the native halophytes Salicornia pacifica, Jaumea carnosa, and Distichlis spicata declined significantly at all elevations if LIRA were present in plots (over a 6-month, fall–winter period). Results suggest LIRA’s invasion potential is highest above MHHW where salinity and moisture are lower, but that LIRA competes with native plants from MHW to above MHHW. We recommend removal efforts with emphasis on the salt marsh-terrestrial ecotone where LIRA seed output is highest.
Read full abstract