Migratory distances and stopover locations are changing for many passerines in response to climate change. Morphological changes have been linked to rising global temperatures in both migrants and residents, but the implications of these changes on fuel loads, and associated flight ranges are little studied. Wing length and body mass changes between 1964 and 2020 were calculated for 15 migrant and partially migrant passerines in Britain. Changes in fuel load and lean body mass were also estimated and used to predict flight ranges. Twelve of the species have undergone morphological changes and eight species, estimated fuel load changes. Nine species were estimated to have reduced flight ranges, indicating that the morphological changes have not compensated fully for the reduction in flight range experienced since 1964. Partial migrants showed greater decreases in flight ranges than did full migrants, which may indicate greater behavioural plasticity in the former. Those species which do not adapt morphologically or behaviourally may be unable to complete long migrations, resulting in restriction to sub-optimal breeding/wintering habitats, or a need for a sooner first stop and more stops en route. This highlights the importance of conserving migratory stopover sites, particularly in the Mediterranean and North Africa that immediately precede major geographical barriers, as-well-as breeding and wintering grounds.
Read full abstract