Most information about distal radius microstructure is based on the non-dominant forearm, with little known about the factors that contribute to bilateral asymmetries in the general population, or what factors may influence bilateral changes over time. Here, we analyzed bilateral high resolution peripheral quantitative computed tomography (HRpQCT) data collected over a 12-month period as part of a clinical trial that prescribed a well-controlled, compressive loading task to the nondominant forearm. Baseline data from 102 women age 21–40, and longitudinal data from 66 women who completed the 12-month trial, were examined to determine factors responsible for side-to-side asymmetries in bone structure and change in structure over time. Cross-sectionally, the dominant radius had 2.4%–2.7% larger cross-sectional area, trabecular area, and bone mineral content than the nondominant radius, but no other differences were noted. Those who more strongly favored their dominant arm had significantly more, thinner, closely spaced trabecular struts in their dominant versus nondominant radius. Individuals assigned to a loading intervention had significant bilateral gains in total bone mineral density (2.0% and 1.2% in the nondominant versus dominant sides), and unilateral gains in the nondominant (loaded) cortical area (3.1%), thickness (3.0%), bone mineral density (1.7%) and inner trabecular density (1.3%). Each of these gains were significantly predicted by loading dose, a metric that included bone strain, number of cycles, and strain rate. Within individuals, change was negatively associated with age, meaning that women closer to age 40 experienced less of a gain in bone versus those closer to age 21. We believe that dominant/nondominant asymmetries in bone structure reflect differences in habitual loads during growth and past ability to adapt, while response to loading reflects current individual physiologic capacity to adapt.