Background: Pulmonary hypertension (PH) is a fatal disease characterized by an increased mean pulmonary arterial pressure above 25mmHg. This increased pressure is, at least in part, due to thickening of the distal pulmonary arteries. Recently, numerous studies demonstrated an increased plasma concentration of oxidized lipids in PH and in diseases where secondary PH developed. Furthermore, 15-hydroxyeicosatetraenoic acid (15-HETE) an oxidized lipid and a major metabolite of arachidonic acid in the lung, has been implicated in dysregulation of major biological pathways in PH. However, the mechanisms involved in the causal role of 15-HETE in pulmonary hypertension development are not known. Methods and Results: To study the role of 15-HETE in PH development, we fed C57BL6/J mice a diet supplemented with 15-HETE for 3 weeks with no other insults. After 3 weeks on the diet with added 15-HETE, C57BL6/J mice had increased concentrations of not only 15-HETE but also of other oxidized lipids (5-, 11- and 12-HETE) in plasma and lung, and they developed PH. RNA-seq analysis revealed the activation of pathways involved in antigen processing and presentation, and with evidence of T cell mediated cytotoxicity in lungs of mice fed 15-HETE. Transcriptomic profiling of lung tissues obtained from patients with pulmonary arterial hypertension (PAH) demonstrated activation of pathways similar to those seen mice. In mice fed a 15-HETE diet, there was an increase in the number of CD8/CD69 double positive cells, as well as an increase in pulmonary arterial endothelial cell (PAEC) apoptosis. Furthermore, PAEC exposed to 15-HETE were more prone to apoptosis when exposed to CD8 cells. Adding Tg6F, an apoA-I mimetic peptide to the 15-HETE diet prevented and rescued PH in C57BL6/J mice, in part, by inhibiting PAEC apoptosis. Conclusions: 15-HETE diet induced PH in C57Bl6/J mice by triggering PAEC death in a T-cell dependent mechanism. The apoA-I mimetic peptide Tg6F was able to prevent and rescue PH induced by 15-HETE.