Study design: A quasi-experimental study utilized a matched-pair design, administering photobiomodulation at four-sites on one side of the body and assigning control to the other side at corresponding sites. Objectives: This study aimed to assess photobiomodulation treatment effects on bone mineral density (BMD) measurement using dual-energy X-ray-absorptiometry in individuals with complete spinal cord injury (C.SCI) and osteoporosis. Methods: Eight patients received treatment at four-sites: forearm-mid-distal (MID), proximal-femur, distal-femur, and proximal-tibia, totaling 32 sites. Using an 830 nm gallium-aluminum-arsenide semiconductor laser irradiation was administered three times weekly for 8 weeks. Different doses (energy density) were determined depending on bone depth from skin surface, as assessed by sonography and adjusted through irradiation time to be 8, 10, and 12 J/cm2 for depths <1 cm, between 1 and 1.5 cm, and >1.5 cm, respectively, using 200 mW power to deliver the optimal isodose of laser at each depth of bone within each therapeutic site. BMD was measured at baseline, week 8 of treatment, and week 15 of follow-up. Serum 25-(OH)-vitamin D and bone formation markers including osteocalcin and bone-alkaline-phosphatase (B-ALP) were also assessed at baseline and week 8 of treatment. Results: Significant increases in BMD were noted in proximal-femur and forearm-MID at both week 8 and week 15. Serum 25-(OH)-vitamin D levels significantly increased after treatment. However, no notable changes were observed in distal-femur and proximal-tibia BMD or in osteocalcin and B-ALP levels. Conclusions: Photobiomodulation (830 nm) laser demonstrated efficacy in improving BMD at proximal-femur and forearm-MID in individuals with C.SCI. Moreover, the observed positive influence on vitamin D levels suggests a potential photobiomodulation role, warranting further investigation.
Read full abstract