Metal coordinating propertiesof DOC (dissolved organic carbon), and henceits influence on heavy metal release andmineral weathering, depend on the compositionand properties of DOC. Tree species producelitter with different chemical composition anddegradability, and these differences mightinfluence the composition and reactivity of DOCin soil solutions. Accordingly, analysis ofcomposition and reactivity of DOC in soilsolution samples collected by centrifugationfrom 16 forest soil O horizons from the fourtree species beech (Fagus sylvatica L.),oak (Quercus robur L.), grand fir (Abies grandis Lindl.), and Norway spruce (Picea abies (L.) Karst.) on two clayey and twosandy soils were carried out. The compositionand properties of DOC were determined bycapillary zone electrophoresis, acid-basetitration, Cu ion titration, total elementalanalysis, IR and UV spectroscopy, and metalrelease assays. Concentrations of DOC rangedfrom 20 to 163 mM with pH ranging from 4.6 to7.3. Norway spruce produced the highest DOCconcentration, and the lowest pH. Carbon inlow-molecular-weight aliphatic carboxylic acids(LACA) accounted for less than 6% of DOC withformic and acetic acids as the most abundantLACAs. The DOC was cation exchanged and protonsaturated to obtain comparable forms of DOC.Titratable carboxylic acid and phenolic groupswere in the range 51 to 82 and 20 to64 mmol·mol−1 C, respectively, with fewerphenolic groups in grand fir DOC as the onlysignificant difference. Infrared spectra offreeze-dried DOC samples suggest low contentsof aromatic C in the DOC especially from grandfir stands. Stability constants, log K of Cu-DOC complexes, determined by Cu ion titrationof DOC samples with fitting of the data to atwo-site binding model, were in the range 5.63to 6.21 for the strong binding sites and 3.58to 4.10 for the weak sites, but with nosignificant effects of tree species or site.Freeze-dried DOC samples were found to consistof 41 to 45% C, 38 to 49% O, 4.4 to 5.4% Hand 1.2 to 2.0% N and C/N ratios in the range26 to 42. Reactivity of DOC in terms of releaserates of Cd, Cu and Fe cations from a soilsample (flow cell experiments) showed nosignificant differences among DOC samples fromdifferent tree species and soil types.Apparently, only minor differences occur inchemical composition and reactivity ofequivalent concentrations of DOC in forestfloor soil solutions irrespective of origin,i.e. four tree species and two soil types. Soilsolution pH and the concentration of DOCproduced by various tree species are thecritical parameters when distinguishing amongtree species in relation to heavy metal releaseand mineral weathering.